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We examine two mechanisms that have been put forward to explain the selection of quasipatterns in single-
and multifrequency forced Faraday wave experiments. Both mechanisms can be used to generate stable qua-
sipatterns in a parametrically forced partial differential equation that shares some characteristics of the Faraday
wave experiment. One mechanism, which is robust and works with single-frequency forcing, does not select a
specific quasipattern: we find, for two different forcing strengths, 12-fold and 14-fold quasipatterns. The
second mechanism, which requires more delicate tuning, can be used to select particular angles between
wavevectors in the quasipattern.
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I. INTRODUCTION

The Faraday wave experiment consists of a horizontal
layer of fluid that develops standing waves on its surface as it
is driven by vertical oscillation with amplitude exceeding a
critical value; see �1,2� for surveys. Faraday wave experi-
ments have repeatedly produced new patterns of behavior
requiring new ideas for their explanation. An outstanding
example of this was the discovery of quasipatterns in experi-
ments with one frequency �3� and two commensurate fre-
quencies �4�. Quasipatterns do not have translation order, but
their spatial Fourier transforms have 8-, 10-, or 12-fold �or
higher� rotational order.

Two mechanisms have been proposed for quasipattern
formation, both building on ideas of Newell and Pomeau �5�.
One applies to single-frequency forced Faraday waves �6�
and has been tested experimentally �7�. Another was devel-
oped to explain the origin of the two length scales in super-
lattice patterns �8,9� found in two-frequency experiments
�10�. The ideas have not been tested quantitatively, but have
been used qualitatively to control quasipattern �1,11� and su-
perlattice pattern �12� formation in two- and three-frequency
experiments.

One aim of this paper is to demonstrate that both pro-
posed mechanisms for quasipattern formation are viable. In
order to claim convincingly that we understand the pattern
selection process, we have designed a partial differential
equation �PDE� and forcing functions that produce a priori
the particular patterns of interest:

�U

�t
= �� + i��U + �� + i���2U + �� + i���4U + Q1U2

+ Q2�U�2 + C�U�2U + i Re�U�f�t� , �1�

where f�t� is a real-valued forcing function with period 2�,
the pattern U�x ,y , t� is a complex-valued function, ��0, �,
�, �, �, and � are real parameters, and Q1, Q2, and C are
complex parameters. The PDE has multifrequency forcing
and shares many of the characteristics of the real Faraday
wave experiment, but has an easily controllable dispersion
relation and simple nonlinear terms. In particular, the linear
stability of the trivial solution reduces to the damped

Mathieu equation, with subharmonic and harmonic tongues,
the nonlinear terms allow three-wave interactions, and there

is a Hamiltonian limit ��=�=�=0, Q2=−2Q̄1, and C=−C̄�.
One issue, which we do not address here, is the distinction

between true and approximate quasipatterns, as found in nu-
merical experiments with periodic boundary conditions. Ow-
ing to the problem of small divisors, there is as yet no satis-
factory mathematical treatment of quasipatterns. �This issue
is discussed in detail in �13�.� In spite of this, the stability
calculations described below, which are in the framework of
a 12-mode amplitude expansion truncated at cubic order,
prove to be a reliable guide to finding parameter values
where approximate quasipatterns are stable. The fact that
stable 12-fold quasipatterns are found where expected dem-
onstrates that this approach provides useful information.

With advances in computing power, we are able to go to
larger domains and longer integration times to obtain very
clean examples of approximate quasipatterns, going further
than previous numerical studies �14�. In addition, we report
here an example of a spontaneously formed 14-fold quasi-
pattern.

II. PATTERN SELECTION

Resonant triads play a key role in the understanding of
pattern selection mechanisms. Consider a two- �or more� fre-
quency forcing function of the form

f�t� = fm cos�mt + 	m� + fn cos�nt + 	n� + ¯ , �2�

where m and n are integers, fm and fn are amplitudes, and 	m
and 	n are phases. We consider m to be the dominant driving
frequency, and focus on a pair of waves, each with wave
number km satisfying the linear dispersion relation 
�km�
=m /2. These waves have the correct natural frequency to be
driven parametrically by the forcing f�t�. We write the criti-
cal modes in traveling wave form z1eik1·x+imt/2 and
z2eik2·x+imt/2. These waves will interact nonlinearly with
waves z3eik3·x+i
�k3�t, where k3=k1+k2 and 
�k3� is the
frequency associated with k3, provided that either �1� the
same resonance condition is met with the temporal frequen-
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cies i.e., 
�k3�=m /2+m /2, or �2� any mismatch �= �
�k3�
−m /2−m /2� in this temporal resonance condition can be
compensated by the forcing f�t�. The first case corresponds
to a 1:2 resonance, which occurs even for single-frequency
forcing �fn=0�, and the second applies, e.g., to two-
frequency forcing with the third wave oscillating at the dif-
ference frequency: 
�k3�= �m−n� and �=n. Note that in both
cases the temporal frequency 
�k3� determines the angle �
between the wave vectors k1 and k2 via the dispersion rela-
tion �Fig. 1�, and therefore provides a possible selection
mechanism for certain angles in the spatial Fourier spectrum
being enhanced or suppressed. Selecting an angle of 0° �Fig.
1�a�� is a special case.

The nonlinear interactions of the modes can be under-
stood by considering resonant triad equations describing
small-amplitude patterns, which take the form

ż1 = z1 + q1z2z3 + �a�z1�2 + b�z2�2�z1 + ¯ ,

ż2 = z2 + q1z1z3 + �a�z2�2 + b�z1�2�z2 + ¯ ,

ż3 = 3z3 + q3z1z2 + ¯ , �3�

where all coefficients are real, and the dots refer to deriva-
tives on time scales long compared to the forcing period. The
quadratic coupling coefficients qj are O�1� in the forcing in
the 1:2 resonance case, and O��fn�� in the difference fre-
quency case. For other angles � between the wave vectors k1
and k2, we expect qj �0 because the temporal resonance
condition for the triad of waves is not met. Here we are
assuming that the z3 mode is damped when  goes through
zero �3�0�, so z3 can be eliminated via center manifold
reduction near the bifurcation point �z3�q3z1z2 / �3��, result-
ing in the bifurcation problem

ż1 = z1 − ��z1�2 + B��z2�2�z1,

ż2 = z2 − ��z2�2 + B��z1�2�z2, �4�

where we have rescaled z1 and z2 by a factor of 1 /��a� and
assumed that a�0. Here B�=b /a+q1q3 /a�3� includes the
contribution from the slaved mode z3, and depends on the
angle � between the two wave vectors k1 and k2.

The function B� has important consequences for the sta-
bility of regular patterns. Within the context of �4�, stripes
are stable if B��1, while rhombs associated with a given
angle � are preferred if �B���1. By judicious choice of forc-
ing frequencies, we have some ability to control the magni-
tude of B� over a range of angles � �9�, which allows the
enhancement or suppression of certain combinations of wave
vectors in the resulting patterns, depending on the sign of
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FIG. 1. �a� If the dispersion relation satisfies 
�2km�=2
�km�,
then two modes with wave number km and aligned wave vectors
k1=k2 �inner circle� resonate in space and time with a mode with
k3=2k1 �outer circle�. �b� With two-frequency forcing, consider two
modes with wave vectors k1 and k2, with the same wave number km,
and with 
�km�=m /2 �middle circle�. The nonlinear combination of
these two waves can, in the presence of forcing at frequency n
�outer circle�, interact with a mode with wavevector k3 �inner
circle�, provided k3=k1+k2 and 
�k3�= �m−n�.
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FIG. 2. B� for the two cases. �a� Single-frequency forcing with
1:2 resonance. The parameter values are �=1/3, �=−1/6, �=0,
�=−0.005, �=0.001, �=0, Q1=3+4i, Q2=−6+8i, C=−1+10i,
m=1, 	1=0, and f1=0.024 002. �b� Multifrequency �4, 5, 8� forc-
ing, with �=0.633 975, �=−1.366 025, �=0, �=−0.2, �=−0.2, �
=−0.15, Q1=1+ i, Q2=−2+2i, C=−1+10i, f4=0.534 37, f5

=0.763 16, f8=1.490 63, 	4=0, 	5=0, and 	8=0. The � symbol is
the result of a separate calculation.
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q1q3. Alternatively, if we choose forcing frequencies that se-
lect an angle of 0°, then this can lead to a large resonant
contribution: a can become large �6�. This causes the res-
caled cross-coupling coefficient B� to be small over a broad
range of � away from �=0. �As �→0, it can be shown that
B�→2.�

III. RESULTS

We present parameter values that demonstrate that the two
mechanisms are viable methods of predicting parameter val-
ues for stable approximate quasipatterns.

The dispersion relation of the PDE �1� is 
�k�
=�−�k2+�k4. With single-frequency forcing, we choose
m=1, and a spatial scale so that modes with k=1 are driven
subharmonically: 
�1�= 1

2 . To have 1:2 resonance in space
and time, we impose 
�2�=1, which leads to �= 1

3 +4� and
�=− 1

6 +5�. We choose �=0, small values for the damping
coefficients �, �, and �, and order one values for the non-
linear coefficients. We solve the linear stability problem nu-

merically to find the critical value of the amplitude f1 in the
forcing function, and use weakly nonlinear theory �15� to
calculate B� �Fig. 2�a��. This curve has B0=2, but B� drops
away sharply, and is close to zero for ��30°, for the reasons
explained above. We use B� at 30°, 60°, and 90° and find
that, within the restrictions of a 12-mode expansion, 12-fold
quasipatterns are stable.

A numerical solution of the PDE �1� forced at 1.1 times
the critical value is shown in Fig. 3�a�, in a square domain
with periodic boundary conditions, of size 30�30 wave-
lengths, with 5122 Fourier modes �dealiased�. The gray scale
corresponds to the real part of U�x ,y , t� at an integer multiple
of the forcing period. The time-stepping method was the
fourth-order ETDRK4 �16�, with 20 timesteps per period of
the forcing. The solution is an approximate quasipattern: the
primary modes that make up the pattern are �30, 0� and �26,
15� and their reflections, in units of basic lattice vectors.
These two wave vectors are 29.98° apart, and differ in length
by 0.05%. The amplitudes of the modes differ by 0.5%. The
initial condition was not in any invariant subspace, and the
PDE was integrated for 160 000 periods of the forcing. How-

(a) (b)

(c)

FIG. 3. �a� With parameter values as in Fig. 2�a�, in a domain 30�30 wavelengths, and forced at 1.1 times the critical amplitude, we find
a subharmonic 12-fold quasipattern. �b� At 1.3 times critical, the 12-fold quasipattern is unstable and is replaced by a 14-fold quasipattern.
�c� With parameter values as in Fig. 2�b� and with �f4 , f5 , f8� set at 1.003 times their critical values, we find a harmonic 12-fold quasipattern
in a 112�112 domain �only a third is shown�.
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ever, when we increase the forcing to 1.3 times critical, we
find that the 12-fold quasipattern is unstable and is replaced
�after a transient of 50 000 periods� by an approximate
14-fold quasipattern �Fig. 3�b��. In this case, the modes are
�30, 0�, �27, 13�, �19, 23�, and �7, 29�, differing in length by
0.5% and having angles within 1.5° of 360°/14. The ampli-
tudes differ by about 10%.

The second method of producing quasipatterns involves
the weakly damped difference frequency mode, and is more
selective, but also requires some fine-tuning of the param-
eters. In order to use triad interactions to encourage modes at
30°, we choose m=4, n=5 forcing, setting 
�1�=2, and re-
quiring that a wave number involved in 30° mode interac-
tions �k2=2−�3� correspond to the difference frequency:

�k�=1. One solution is �=0.633 975, �=−1.366 025, and
�=0. Twelvefold quasipatterns also require modes at 90° to
be favored, and for these choices of parameters 
��2� is
3.37. Although this is not particularly close to 4, we can use
1:2 resonance �driving at frequency 8� to control the 90°
interaction. The resulting B� curve �Fig. 2�b�� shows pro-
nounced dips at 30° and 90° as required. Again, B30, B60, and
B90 are used to show that, within a 12-amplitude cubic trun-
cation, 12-fold quasipatterns are stable, this time between
0.9995 and 1.0095 times critical. Squares are also stable
above 1.0015 times critical.

A numerical solution of the PDE �1� at 1.003 times criti-
cal is shown in Fig. 3�c�, in a periodic domain 112�112
wavelengths �integrated using 15362 Fourier modes�. This
solution was followed for over 10 000 forcing periods. The
larger domain allows an improved approximation to the qua-
sipattern: the important wave vectors are �112, 0� and �97,
56�, which are 29.9987° apart and differ in length by
0.004%. The amplitudes of these modes differ by 1%. A
similar pattern was also found in a 30�30 domain, with the
same modes as in Fig. 3�a�.

IV. DISCUSSION

We investigated two quasipattern formation mechanisms
for Faraday waves within a single PDE model of pattern
formation via parametric forcing, and demonstrated viability
of both mechanisms. One uses 1:2 resonance in space and

time to magnify the self-interaction coefficient a and thereby,
on rescaling, diminish the cross-coupling coefficient B� for
angles greater than about 30°, which leads to “turbulent crys-
tals” �5�. Within this framework, it is not clear why regular
8-, 10-, 12-, or 14-fold quasipatterns, or indeed any other
combination of modes, should be preferred �although Zhang
and Viñals �6� proposed that quasipatterns minimizing a
Lyapunov function should be favoured�. The mechanism is
robust �the patterns are found well above onset�, and requires
only single-frequency forcing. A dispersion relation that sup-
ports 1:2 resonance in space and time is needed.

The existence of 14-fold �and higher� quasipatterns has
been suggested before �6,13,17�; we have presented here a
spontaneously formed 14-fold quasipattern that is a stable
solution of a PDE. Examples where 14-fold symmetry is
imposed externally have been reported in optical experi-
ments �18�. The Fourier spectra of 12-fold and 14-fold qua-
sipatterns are both dense, but those of 14-fold quasipatterns
are much denser, owing to the difference between quadratic
and cubic irrational numbers �13�. This difference may have
profound consequences for their mathematical treatment.

The second mechanism uses three-wave interactions in-
volving a damped mode associated with the difference of the
two frequencies in the forcing to select a particular angle
�30° in the example presented here�. Using different primary
frequencies, or altering the dispersion relation, allows other
angles, or combinations of angles, to be selected. The advan-
tage is that a forcing function can be designed to produce a
particular pattern. On the other hand, the strongest control of
B� occurs for parameters close to the bicritical point, which
limits the range of validity of the weakly nonlinear theory
used to compute stability. This issue will be pursued else-
where.
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